On the Hecke algebra of a noncongruence subgroup
نویسنده
چکیده
We begin by recalling standard facts concerning Hecke algebras and modular forms, for details of which the reader is referred to Chapter 3 of Shimura’s book [11]. By definition H (in Shimura’s notation, R(Γ, GL2(Q) )⊗Q) is the Q-algebra spanned by double cosets [ΓγΓ], for γ ∈ GL2(Q) with det γ > 0. Write as usual Mk(Γ) for the complex vector space of holomorphic modular forms of weight k ≥ 0, and Sk(Γ) for the subspace of cusp forms. There is a natural action of H on Mk(Γ), which preserves Sk(Γ). (In fact there is more than one way to normalise this action; the choice is irrelevant for this paper.)
منابع مشابه
On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$
We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...
متن کاملOn Atkin and Swinnerton-dyer Congruence Relations (3)
In the previous two papers with the same title ([LLY05] by W.C. Li, L. Long, Z. Yang and [ALL05] by A.O.L. Atkin, W.C. Li, L. Long), the authors have studied special families of cuspforms for noncongruence arithmetic subgroups. It was found that the Fourier coefficients of these modular forms at infinity satisfy three-term Atkin and Swinnerton-Dyer congruence relations which are the p-adic anal...
متن کاملOn Atkin and Swinnerton-dyer Congruence Relations (2)
In this paper we give an example of a noncongruence subgroup whose three-dimensional space of cusp forms of weight 3 has the following properties. For each of the four residue classes of odd primes modulo 8 there is a basis whose Fourier coefficients at infinity satisfy a three-term Atkin and Swinnerton-Dyer congruence relation, which is the p-adic analogue of the threeterm recursion satisfied ...
متن کاملOn Atkin and Swinnerton - Dyer Congruence
In this paper we give an example of a noncongruence subgroup whose three-dimensional space of cusp forms of weight 3 has the following properties. For each of the four residue classes of odd primes modulo 8 there is a basis whose Fourier coefficients at infinity satisfy a three-term Atkin and Swinnerton-Dyer congruence relation, which is the p-adic analogue of the threeterm recursion satisfied ...
متن کاملOn Atkin
In this paper we give an example of a noncongruence subgroup whose three-dimensional space of cusp forms of weight 3 has the following properties. For each of the four residue classes of odd primes modulo 8 there is a basis whose Fourier coefficients at infinity satisfy a three-term Atkin and Swinnerton-Dyer congruence relation, which is the p-adic analogue of the threeterm recursion satisfied ...
متن کامل